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Multicomponent reactions (MCRs) have drawn high efforts in
recent years owing to exceptional synthetic efficiency, intrinsic
atom economy, high selectivity, and procedural simplicity.1 These
reactions constitute a valuable approach for creation of large li-
braries of structurally related, drug-like compounds, thereby en-
abling lead identification and lead optimization in drug
discovery.2 In a true sense, these represent environmentally
friendly processes by reducing the number of steps, energy con-
sumption, and waste production.

Compounds with 2-amino-3,5-dicarbonitrile-6-thio-pyridines
ring system exhibit diverse pharmacological activities and are use-
ful as anti-prion,3 anti-hepatitis B virus,4 anti-bacterial,5 and anti-
cancer6 agents and as potassium channel openers for treatment
of urinary incontinence.7 In addition, several of these compounds
were discovered to be highly selective ligands for adenosine recep-
tors,8 which were recently recognized as potential targets for the
development of new drugs for the treatment of Parkinson’s disease,
hypoxia/ischemia, asthma, kidney disease, epilepsy, and cancer.9

In most of the existing studies10 on 2-amino-3,5-dicarbonitrile-
6-thio-pyridine derivatives, these compounds were synthesized by
multistep methods.8a,b,10 Recently, Evodkimov et al.11 have devel-
oped a simple protocol for preparation of 2-amino-3,5-dicarboni-
trile-6-thio-pyridines by a multicomponent reaction of an
aldehyde, malononitrile, and a thiol in one pot in the presence of
ll rights reserved.
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a base catalyst such as DABCO or triethylamine. As the yields of
2-amino-3,5-dicarbonitrile-6-thio-pyridine derivatives obtained
by this method are poor (20–48%), a modification to this method
was reported recently by Ranu et al.12 using the basic ionic liquid
1-methyl-3-butylimidazolium hydroxide or [bmIm]OH, which
could serve as a base as well as a reaction medium. In all the re-
ported methods for preparation of 2-amino-3,5-dicarbonitrile-6-
thio-pyridines, reactions were conducted essentially under base
catalysis. Conversely, we discovered that Lewis acids are also effec-
tive catalysts and we report here the first observation of one-pot
multicomponent reaction of a variety of aldehydes 1a–i with mal-
ononitrile 2 and thiophenol 3 under ZnCl2 catalysis producing 2-
amino-3,5-dicarbonitrile-6-thio-pyridines 4a–i in moderate to
good yields (Scheme 1).

In our preliminary studies, we have investigated the multi-
component reaction of tolualdehyde 1a with malononitrile 2
and thiophenol 3, using a variety of Lewis acids such as ZnCl2,
AlCl3, FeCl3, I2, Cu(OTf)3, InCl3, and BF3�Et2O as catalysts, to ob-
tain the corresponding pyridine derivative 4a under conventional
and microwave heating conditions using ethanol as a solvent
(Table 1).

In this study, ZnCl2 was observed to be highly efficient produc-
ing 4a in 73 and 77% yields under conventional and microwave
heating conditions, respectively. We have also synthesized a vari-
ety of pyridine derivatives 4 using ZnCl2 as catalyst under the same
conditions using aliphatic, aryl, and heteroaryl aldehydes. The rep-
resentative results13 are given in Table 2.
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Table 2
ZnCl2-catalyzed multicomponent synthesis of pyridines

Entry R-CHO 1 Product 4 Convent
% Yielda

a

CHO

Me
NPhS NH2

CNNC

Me

73 (2 h)

b PhCHO

NPhS NH2

CN
Ph

NC
65 (2 h)

R = alkyl, aryl
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Scheme 1.

Table 1
Lewis acid-catalyzed multicomponent reaction of tolualdehyde, thiophenol, and
malononitrile

S. No. Catalyst Microwave heating Conventional heating

Time (min) Yield (%) Time (h) Yield (%)

1 ZnCl2 2 77 2 73
2 AlCl3 5 20 12 7
3 FeCl3 5 17 12 —
4 I2 5 15 12 —
5 Cu(OTf)3 5 30 12 15
6 InCl3 5 — 12 —
7 BF3�Et2O 5 — 12 —
8 K10 clay 5 — 12 —
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Evodkimov et al.11 have reported formation of side products
such as 1,4-dihyropyridine derivatives and enaminonitrile in their
base-catalyzed multicomponent reaction. However, under Lewis
acid catalysis, formation of these products has not been observed.
The plausible mechanism for the formation of pyridines under Le-
wis acid catalysis is shown in Scheme 2.

In conclusion, the present work describes an efficient one-pot
multicomponent synthesis of 2-amino-3,5-dicarbonitrile-6-thio-
pyridines under microwave and conventional heating conditions
using ZnCl2 as catalyst. This work is the first application of Lewis
acid as catalyst in the preparation of these compounds.
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ional heating Microwave heating Melting point (oC)
(reaction time) % Yielda (reaction time)

77 (2 min) 208–21111b

65 (2 min) 216–21811b



Table 2 (continued)

Entry R-CHO 1 Product 4 Conventional heating Microwave heating Melting point (oC)
% Yielda (reaction time) % Yielda (reaction time)

c

CHO

NPhS NH2

CNNC 45 (2.5 h) 46 (3 min) 219–220

d

CHO

F
NPhS NH2

CNNC

F

62 (2 h) 67 (2 min) 221–223

e

O
CHO

NPhS NH2

CNNC

O

60 (2.5 h) 62 (3 min) 174–175

f

CHO

OMe
OMe

NPhS NH2

CNNC

OMe
MeO

52 (2 h) 50 (2 min) 226–228

g

S
CHO

NPhS NH2

CNNC

S

60 (2.5 h) 60 (3 min) 208–2103b

h

CHO

NO2 NPhS NH2

CNNC

NO2

50 (2 h) 52 (2 min) 287–28911b

i

N
H

CHO
HN

NPhS NH2

CNNC 50 (2 h) 50 (3 min) 220–222

a Isolated yields. All products were characterized by NMR, IR, and mass spectral data.
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